3.50 \(\int \frac {a+b \text {csch}^{-1}(c x)}{(d+e x)^3} \, dx\)

Optimal. Leaf size=163 \[ -\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}-\frac {b c e \sqrt {\frac {1}{c^2 x^2}+1}}{2 d \left (c^2 d^2+e^2\right ) \left (\frac {d}{x}+e\right )}+\frac {b \left (2 c^2 d^2+e^2\right ) \tanh ^{-1}\left (\frac {c^2 d-\frac {e}{x}}{c \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {c^2 d^2+e^2}}\right )}{2 d^2 \left (c^2 d^2+e^2\right )^{3/2}}+\frac {b \text {csch}^{-1}(c x)}{2 d^2 e} \]

[Out]

1/2*b*arccsch(c*x)/d^2/e+1/2*(-a-b*arccsch(c*x))/e/(e*x+d)^2+1/2*b*(2*c^2*d^2+e^2)*arctanh((c^2*d-e/x)/c/(c^2*
d^2+e^2)^(1/2)/(1+1/c^2/x^2)^(1/2))/d^2/(c^2*d^2+e^2)^(3/2)-1/2*b*c*e*(1+1/c^2/x^2)^(1/2)/d/(c^2*d^2+e^2)/(e+d
/x)

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6290, 1568, 1475, 1651, 844, 215, 725, 206} \[ -\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}-\frac {b c e \sqrt {\frac {1}{c^2 x^2}+1}}{2 d \left (c^2 d^2+e^2\right ) \left (\frac {d}{x}+e\right )}+\frac {b \left (2 c^2 d^2+e^2\right ) \tanh ^{-1}\left (\frac {c^2 d-\frac {e}{x}}{c \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {c^2 d^2+e^2}}\right )}{2 d^2 \left (c^2 d^2+e^2\right )^{3/2}}+\frac {b \text {csch}^{-1}(c x)}{2 d^2 e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])/(d + e*x)^3,x]

[Out]

-(b*c*e*Sqrt[1 + 1/(c^2*x^2)])/(2*d*(c^2*d^2 + e^2)*(e + d/x)) + (b*ArcCsch[c*x])/(2*d^2*e) - (a + b*ArcCsch[c
*x])/(2*e*(d + e*x)^2) + (b*(2*c^2*d^2 + e^2)*ArcTanh[(c^2*d - e/x)/(c*Sqrt[c^2*d^2 + e^2]*Sqrt[1 + 1/(c^2*x^2
)])])/(2*d^2*(c^2*d^2 + e^2)^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1475

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x
] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1568

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^(mn_.))^(q_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Int[x^(m + mn*q
)*(e + d/x^mn)^q*(a + c*x^n2)^p, x] /; FreeQ[{a, c, d, e, m, mn, p}, x] && EqQ[n2, -2*mn] && IntegerQ[q] && (P
osQ[n2] ||  !IntegerQ[p])

Rule 1651

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, d
 + e*x, x], R = PolynomialRemainder[Pq, d + e*x, x]}, Simp[(e*R*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1
)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p*ExpandToSum[(m
+ 1)*(c*d^2 + a*e^2)*Q + c*d*R*(m + 1) - c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, c, d, e, p}, x] && Po
lyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1]

Rule 6290

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a +
b*ArcCsch[c*x]))/(e*(m + 1)), x] + Dist[b/(c*e*(m + 1)), Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x]
, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {a+b \text {csch}^{-1}(c x)}{(d+e x)^3} \, dx &=-\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}-\frac {b \int \frac {1}{\sqrt {1+\frac {1}{c^2 x^2}} x^2 (d+e x)^2} \, dx}{2 c e}\\ &=-\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}-\frac {b \int \frac {1}{\sqrt {1+\frac {1}{c^2 x^2}} \left (e+\frac {d}{x}\right )^2 x^4} \, dx}{2 c e}\\ &=-\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}+\frac {b \operatorname {Subst}\left (\int \frac {x^2}{(e+d x)^2 \sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{2 c e}\\ &=-\frac {b c e \sqrt {1+\frac {1}{c^2 x^2}}}{2 d \left (c^2 d^2+e^2\right ) \left (e+\frac {d}{x}\right )}-\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}-\frac {(b c) \operatorname {Subst}\left (\int \frac {e-\left (d+\frac {e^2}{c^2 d}\right ) x}{(e+d x) \sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{2 e \left (c^2 d^2+e^2\right )}\\ &=-\frac {b c e \sqrt {1+\frac {1}{c^2 x^2}}}{2 d \left (c^2 d^2+e^2\right ) \left (e+\frac {d}{x}\right )}-\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}+\frac {b \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{2 c d^2 e}-\frac {\left (b c \left (2+\frac {e^2}{c^2 d^2}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{(e+d x) \sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{2 \left (c^2 d^2+e^2\right )}\\ &=-\frac {b c e \sqrt {1+\frac {1}{c^2 x^2}}}{2 d \left (c^2 d^2+e^2\right ) \left (e+\frac {d}{x}\right )}+\frac {b \text {csch}^{-1}(c x)}{2 d^2 e}-\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}+\frac {\left (b c \left (2+\frac {e^2}{c^2 d^2}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{d^2+\frac {e^2}{c^2}-x^2} \, dx,x,\frac {d-\frac {e}{c^2 x}}{\sqrt {1+\frac {1}{c^2 x^2}}}\right )}{2 \left (c^2 d^2+e^2\right )}\\ &=-\frac {b c e \sqrt {1+\frac {1}{c^2 x^2}}}{2 d \left (c^2 d^2+e^2\right ) \left (e+\frac {d}{x}\right )}+\frac {b \text {csch}^{-1}(c x)}{2 d^2 e}-\frac {a+b \text {csch}^{-1}(c x)}{2 e (d+e x)^2}+\frac {b \left (2 c^2 d^2+e^2\right ) \tanh ^{-1}\left (\frac {c^2 d-\frac {e}{x}}{c \sqrt {c^2 d^2+e^2} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{2 d^2 \left (c^2 d^2+e^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.48, size = 204, normalized size = 1.25 \[ \frac {1}{2} \left (-\frac {a}{e (d+e x)^2}-\frac {b c e x \sqrt {\frac {1}{c^2 x^2}+1}}{d \left (c^2 d^2+e^2\right ) (d+e x)}-\frac {b \left (2 c^2 d^2+e^2\right ) \log \left (c x \left (\sqrt {\frac {1}{c^2 x^2}+1} \sqrt {c^2 d^2+e^2}-c d\right )+e\right )}{d^2 \left (c^2 d^2+e^2\right )^{3/2}}+\frac {b \left (2 c^2 d^2+e^2\right ) \log (d+e x)}{d^2 \left (c^2 d^2+e^2\right )^{3/2}}+\frac {b \sinh ^{-1}\left (\frac {1}{c x}\right )}{d^2 e}-\frac {b \text {csch}^{-1}(c x)}{e (d+e x)^2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcCsch[c*x])/(d + e*x)^3,x]

[Out]

(-(a/(e*(d + e*x)^2)) - (b*c*e*Sqrt[1 + 1/(c^2*x^2)]*x)/(d*(c^2*d^2 + e^2)*(d + e*x)) - (b*ArcCsch[c*x])/(e*(d
 + e*x)^2) + (b*ArcSinh[1/(c*x)])/(d^2*e) + (b*(2*c^2*d^2 + e^2)*Log[d + e*x])/(d^2*(c^2*d^2 + e^2)^(3/2)) - (
b*(2*c^2*d^2 + e^2)*Log[e + c*(-(c*d) + Sqrt[c^2*d^2 + e^2]*Sqrt[1 + 1/(c^2*x^2)])*x])/(d^2*(c^2*d^2 + e^2)^(3
/2)))/2

________________________________________________________________________________________

fricas [B]  time = 1.34, size = 745, normalized size = 4.57 \[ -\frac {a c^{4} d^{6} + b c^{3} d^{5} e + 2 \, a c^{2} d^{4} e^{2} + b c d^{3} e^{3} + a d^{2} e^{4} + {\left (b c^{3} d^{3} e^{3} + b c d e^{5}\right )} x^{2} - {\left (2 \, b c^{2} d^{4} e + b d^{2} e^{3} + {\left (2 \, b c^{2} d^{2} e^{3} + b e^{5}\right )} x^{2} + 2 \, {\left (2 \, b c^{2} d^{3} e^{2} + b d e^{4}\right )} x\right )} \sqrt {c^{2} d^{2} + e^{2}} \log \left (-\frac {c^{3} d^{2} x - c d e + {\left (c^{3} d^{2} + c e^{2}\right )} x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + {\left (c^{2} d x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + c^{2} d x - e\right )} \sqrt {c^{2} d^{2} + e^{2}}}{e x + d}\right ) + 2 \, {\left (b c^{3} d^{4} e^{2} + b c d^{2} e^{4}\right )} x - {\left (b c^{4} d^{6} + 2 \, b c^{2} d^{4} e^{2} + b d^{2} e^{4} + {\left (b c^{4} d^{4} e^{2} + 2 \, b c^{2} d^{2} e^{4} + b e^{6}\right )} x^{2} + 2 \, {\left (b c^{4} d^{5} e + 2 \, b c^{2} d^{3} e^{3} + b d e^{5}\right )} x\right )} \log \left (c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} - c x + 1\right ) + {\left (b c^{4} d^{6} + 2 \, b c^{2} d^{4} e^{2} + b d^{2} e^{4} + {\left (b c^{4} d^{4} e^{2} + 2 \, b c^{2} d^{2} e^{4} + b e^{6}\right )} x^{2} + 2 \, {\left (b c^{4} d^{5} e + 2 \, b c^{2} d^{3} e^{3} + b d e^{5}\right )} x\right )} \log \left (c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} - c x - 1\right ) + {\left (b c^{4} d^{6} + 2 \, b c^{2} d^{4} e^{2} + b d^{2} e^{4}\right )} \log \left (\frac {c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right ) + {\left ({\left (b c^{3} d^{3} e^{3} + b c d e^{5}\right )} x^{2} + {\left (b c^{3} d^{4} e^{2} + b c d^{2} e^{4}\right )} x\right )} \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}}}{2 \, {\left (c^{4} d^{8} e + 2 \, c^{2} d^{6} e^{3} + d^{4} e^{5} + {\left (c^{4} d^{6} e^{3} + 2 \, c^{2} d^{4} e^{5} + d^{2} e^{7}\right )} x^{2} + 2 \, {\left (c^{4} d^{7} e^{2} + 2 \, c^{2} d^{5} e^{4} + d^{3} e^{6}\right )} x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^3,x, algorithm="fricas")

[Out]

-1/2*(a*c^4*d^6 + b*c^3*d^5*e + 2*a*c^2*d^4*e^2 + b*c*d^3*e^3 + a*d^2*e^4 + (b*c^3*d^3*e^3 + b*c*d*e^5)*x^2 -
(2*b*c^2*d^4*e + b*d^2*e^3 + (2*b*c^2*d^2*e^3 + b*e^5)*x^2 + 2*(2*b*c^2*d^3*e^2 + b*d*e^4)*x)*sqrt(c^2*d^2 + e
^2)*log(-(c^3*d^2*x - c*d*e + (c^3*d^2 + c*e^2)*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + (c^2*d*x*sqrt((c^2*x^2 + 1)/
(c^2*x^2)) + c^2*d*x - e)*sqrt(c^2*d^2 + e^2))/(e*x + d)) + 2*(b*c^3*d^4*e^2 + b*c*d^2*e^4)*x - (b*c^4*d^6 + 2
*b*c^2*d^4*e^2 + b*d^2*e^4 + (b*c^4*d^4*e^2 + 2*b*c^2*d^2*e^4 + b*e^6)*x^2 + 2*(b*c^4*d^5*e + 2*b*c^2*d^3*e^3
+ b*d*e^5)*x)*log(c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) - c*x + 1) + (b*c^4*d^6 + 2*b*c^2*d^4*e^2 + b*d^2*e^4 + (b
*c^4*d^4*e^2 + 2*b*c^2*d^2*e^4 + b*e^6)*x^2 + 2*(b*c^4*d^5*e + 2*b*c^2*d^3*e^3 + b*d*e^5)*x)*log(c*x*sqrt((c^2
*x^2 + 1)/(c^2*x^2)) - c*x - 1) + (b*c^4*d^6 + 2*b*c^2*d^4*e^2 + b*d^2*e^4)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x
^2)) + 1)/(c*x)) + ((b*c^3*d^3*e^3 + b*c*d*e^5)*x^2 + (b*c^3*d^4*e^2 + b*c*d^2*e^4)*x)*sqrt((c^2*x^2 + 1)/(c^2
*x^2)))/(c^4*d^8*e + 2*c^2*d^6*e^3 + d^4*e^5 + (c^4*d^6*e^3 + 2*c^2*d^4*e^5 + d^2*e^7)*x^2 + 2*(c^4*d^7*e^2 +
2*c^2*d^5*e^4 + d^3*e^6)*x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x + d\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^3,x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/(e*x + d)^3, x)

________________________________________________________________________________________

maple [B]  time = 0.07, size = 963, normalized size = 5.91 \[ -\frac {c^{2} a}{2 \left (c x e +c d \right )^{2} e}-\frac {c^{2} b \,\mathrm {arccsch}\left (c x \right )}{2 \left (c x e +c d \right )^{2} e}+\frac {c^{2} b \sqrt {c^{2} x^{2}+1}\, \arctanh \left (\frac {1}{\sqrt {c^{2} x^{2}+1}}\right )}{2 \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}+\frac {c^{2} b \sqrt {c^{2} x^{2}+1}\, d \arctanh \left (\frac {1}{\sqrt {c^{2} x^{2}+1}}\right )}{2 e \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, x \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}-\frac {c^{2} b \sqrt {c^{2} x^{2}+1}\, \ln \left (\frac {2 \sqrt {c^{2} x^{2}+1}\, \sqrt {\frac {c^{2} d^{2}+e^{2}}{e^{2}}}\, e -2 c^{2} d x +2 e}{c x e +c d}\right )}{\sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, \sqrt {\frac {c^{2} d^{2}+e^{2}}{e^{2}}}\, \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}-\frac {c^{2} b \sqrt {c^{2} x^{2}+1}\, d \ln \left (\frac {2 \sqrt {c^{2} x^{2}+1}\, \sqrt {\frac {c^{2} d^{2}+e^{2}}{e^{2}}}\, e -2 c^{2} d x +2 e}{c x e +c d}\right )}{e \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, x \sqrt {\frac {c^{2} d^{2}+e^{2}}{e^{2}}}\, \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}-\frac {c^{2} b e x}{2 \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, d \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}-\frac {b e}{2 \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, x d \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}+\frac {b \,e^{2} \sqrt {c^{2} x^{2}+1}\, \arctanh \left (\frac {1}{\sqrt {c^{2} x^{2}+1}}\right )}{2 \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, d^{2} \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}+\frac {b e \sqrt {c^{2} x^{2}+1}\, \arctanh \left (\frac {1}{\sqrt {c^{2} x^{2}+1}}\right )}{2 \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, x d \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}-\frac {b \,e^{2} \sqrt {c^{2} x^{2}+1}\, \ln \left (\frac {2 \sqrt {c^{2} x^{2}+1}\, \sqrt {\frac {c^{2} d^{2}+e^{2}}{e^{2}}}\, e -2 c^{2} d x +2 e}{c x e +c d}\right )}{2 \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, d^{2} \sqrt {\frac {c^{2} d^{2}+e^{2}}{e^{2}}}\, \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )}-\frac {b e \sqrt {c^{2} x^{2}+1}\, \ln \left (\frac {2 \sqrt {c^{2} x^{2}+1}\, \sqrt {\frac {c^{2} d^{2}+e^{2}}{e^{2}}}\, e -2 c^{2} d x +2 e}{c x e +c d}\right )}{2 \sqrt {\frac {c^{2} x^{2}+1}{c^{2} x^{2}}}\, x d \sqrt {\frac {c^{2} d^{2}+e^{2}}{e^{2}}}\, \left (c^{2} d^{2}+e^{2}\right ) \left (c x e +c d \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/(e*x+d)^3,x)

[Out]

-1/2*c^2*a/(c*e*x+c*d)^2/e-1/2*c^2*b/(c*e*x+c*d)^2/e*arccsch(c*x)+1/2*c^2*b*(c^2*x^2+1)^(1/2)/((c^2*x^2+1)/c^2
/x^2)^(1/2)/(c^2*d^2+e^2)/(c*e*x+c*d)*arctanh(1/(c^2*x^2+1)^(1/2))+1/2*c^2*b/e*(c^2*x^2+1)^(1/2)/((c^2*x^2+1)/
c^2/x^2)^(1/2)/x*d/(c^2*d^2+e^2)/(c*e*x+c*d)*arctanh(1/(c^2*x^2+1)^(1/2))-c^2*b*(c^2*x^2+1)^(1/2)/((c^2*x^2+1)
/c^2/x^2)^(1/2)/((c^2*d^2+e^2)/e^2)^(1/2)/(c^2*d^2+e^2)/(c*e*x+c*d)*ln(2*((c^2*x^2+1)^(1/2)*((c^2*d^2+e^2)/e^2
)^(1/2)*e-c^2*d*x+e)/(c*e*x+c*d))-c^2*b/e*(c^2*x^2+1)^(1/2)/((c^2*x^2+1)/c^2/x^2)^(1/2)/x*d/((c^2*d^2+e^2)/e^2
)^(1/2)/(c^2*d^2+e^2)/(c*e*x+c*d)*ln(2*((c^2*x^2+1)^(1/2)*((c^2*d^2+e^2)/e^2)^(1/2)*e-c^2*d*x+e)/(c*e*x+c*d))-
1/2*c^2*b*e/((c^2*x^2+1)/c^2/x^2)^(1/2)*x/d/(c^2*d^2+e^2)/(c*e*x+c*d)-1/2*b*e/((c^2*x^2+1)/c^2/x^2)^(1/2)/x/d/
(c^2*d^2+e^2)/(c*e*x+c*d)+1/2*b*e^2*(c^2*x^2+1)^(1/2)/((c^2*x^2+1)/c^2/x^2)^(1/2)/d^2/(c^2*d^2+e^2)/(c*e*x+c*d
)*arctanh(1/(c^2*x^2+1)^(1/2))+1/2*b*e*(c^2*x^2+1)^(1/2)/((c^2*x^2+1)/c^2/x^2)^(1/2)/x/d/(c^2*d^2+e^2)/(c*e*x+
c*d)*arctanh(1/(c^2*x^2+1)^(1/2))-1/2*b*e^2*(c^2*x^2+1)^(1/2)/((c^2*x^2+1)/c^2/x^2)^(1/2)/d^2/((c^2*d^2+e^2)/e
^2)^(1/2)/(c^2*d^2+e^2)/(c*e*x+c*d)*ln(2*((c^2*x^2+1)^(1/2)*((c^2*d^2+e^2)/e^2)^(1/2)*e-c^2*d*x+e)/(c*e*x+c*d)
)-1/2*b*e*(c^2*x^2+1)^(1/2)/((c^2*x^2+1)/c^2/x^2)^(1/2)/x/d/((c^2*d^2+e^2)/e^2)^(1/2)/(c^2*d^2+e^2)/(c*e*x+c*d
)*ln(2*((c^2*x^2+1)^(1/2)*((c^2*d^2+e^2)/e^2)^(1/2)*e-c^2*d*x+e)/(c*e*x+c*d))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{4} \, {\left (\frac {2 i \, c^{3} d {\left (\log \left (i \, c x + 1\right ) - \log \left (-i \, c x + 1\right )\right )}}{c^{4} d^{4} + 2 \, c^{2} d^{2} e^{2} + e^{4}} + 4 \, c^{2} \int \frac {x}{2 \, {\left (c^{2} e^{3} x^{4} + 2 \, c^{2} d e^{2} x^{3} + 2 \, d e^{2} x + d^{2} e + {\left (c^{2} d^{2} e + e^{3}\right )} x^{2} + {\left (c^{2} e^{3} x^{4} + 2 \, c^{2} d e^{2} x^{3} + 2 \, d e^{2} x + d^{2} e + {\left (c^{2} d^{2} e + e^{3}\right )} x^{2}\right )} \sqrt {c^{2} x^{2} + 1}\right )}}\,{d x} - \frac {2 \, {\left (3 \, c^{2} d^{2} e + e^{3}\right )} \log \left (e x + d\right )}{c^{4} d^{6} + 2 \, c^{2} d^{4} e^{2} + d^{2} e^{4}} - \frac {2 \, c^{4} d^{6} \log \relax (c) + 2 \, d^{2} e^{4} \log \relax (c) - 2 \, d^{2} e^{4} + 2 \, {\left (2 \, d^{4} e^{2} \log \relax (c) - d^{4} e^{2}\right )} c^{2} - 2 \, {\left (c^{2} d^{3} e^{3} + d e^{5}\right )} x + {\left (c^{4} d^{6} - c^{2} d^{4} e^{2} + {\left (c^{4} d^{4} e^{2} - c^{2} d^{2} e^{4}\right )} x^{2} + 2 \, {\left (c^{4} d^{5} e - c^{2} d^{3} e^{3}\right )} x\right )} \log \left (c^{2} x^{2} + 1\right ) - 2 \, {\left ({\left (c^{4} d^{4} e^{2} + 2 \, c^{2} d^{2} e^{4} + e^{6}\right )} x^{2} + 2 \, {\left (c^{4} d^{5} e + 2 \, c^{2} d^{3} e^{3} + d e^{5}\right )} x\right )} \log \relax (x) - 2 \, {\left (c^{4} d^{6} + 2 \, c^{2} d^{4} e^{2} + d^{2} e^{4}\right )} \log \left (\sqrt {c^{2} x^{2} + 1} + 1\right )}{c^{4} d^{8} e + 2 \, c^{2} d^{6} e^{3} + d^{4} e^{5} + {\left (c^{4} d^{6} e^{3} + 2 \, c^{2} d^{4} e^{5} + d^{2} e^{7}\right )} x^{2} + 2 \, {\left (c^{4} d^{7} e^{2} + 2 \, c^{2} d^{5} e^{4} + d^{3} e^{6}\right )} x}\right )} b - \frac {a}{2 \, {\left (e^{3} x^{2} + 2 \, d e^{2} x + d^{2} e\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^3,x, algorithm="maxima")

[Out]

-1/4*(2*I*c^3*d*(log(I*c*x + 1) - log(-I*c*x + 1))/(c^4*d^4 + 2*c^2*d^2*e^2 + e^4) + 4*c^2*integrate(1/2*x/(c^
2*e^3*x^4 + 2*c^2*d*e^2*x^3 + 2*d*e^2*x + d^2*e + (c^2*d^2*e + e^3)*x^2 + (c^2*e^3*x^4 + 2*c^2*d*e^2*x^3 + 2*d
*e^2*x + d^2*e + (c^2*d^2*e + e^3)*x^2)*sqrt(c^2*x^2 + 1)), x) - 2*(3*c^2*d^2*e + e^3)*log(e*x + d)/(c^4*d^6 +
 2*c^2*d^4*e^2 + d^2*e^4) - (2*c^4*d^6*log(c) + 2*d^2*e^4*log(c) - 2*d^2*e^4 + 2*(2*d^4*e^2*log(c) - d^4*e^2)*
c^2 - 2*(c^2*d^3*e^3 + d*e^5)*x + (c^4*d^6 - c^2*d^4*e^2 + (c^4*d^4*e^2 - c^2*d^2*e^4)*x^2 + 2*(c^4*d^5*e - c^
2*d^3*e^3)*x)*log(c^2*x^2 + 1) - 2*((c^4*d^4*e^2 + 2*c^2*d^2*e^4 + e^6)*x^2 + 2*(c^4*d^5*e + 2*c^2*d^3*e^3 + d
*e^5)*x)*log(x) - 2*(c^4*d^6 + 2*c^2*d^4*e^2 + d^2*e^4)*log(sqrt(c^2*x^2 + 1) + 1))/(c^4*d^8*e + 2*c^2*d^6*e^3
 + d^4*e^5 + (c^4*d^6*e^3 + 2*c^2*d^4*e^5 + d^2*e^7)*x^2 + 2*(c^4*d^7*e^2 + 2*c^2*d^5*e^4 + d^3*e^6)*x))*b - 1
/2*a/(e^3*x^2 + 2*d*e^2*x + d^2*e)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{{\left (d+e\,x\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(1/(c*x)))/(d + e*x)^3,x)

[Out]

int((a + b*asinh(1/(c*x)))/(d + e*x)^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{\left (d + e x\right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/(e*x+d)**3,x)

[Out]

Integral((a + b*acsch(c*x))/(d + e*x)**3, x)

________________________________________________________________________________________